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1 Events and Probabilities

1. Compare the following events:

� We flip a fair coin 26 times, and consider the event that we see 13 heads and 13 tails.

� We select the top 26 cards from a well-shuffled pack, and consider the event that we end
up selecting 13 red and 13 black cards.

Without explicit calculation, which event do you expect is more likely?

2. You are hoping to make a uniform random choice from {1, 2, . . . , k}. Regrettably, all you have
is an m-sided dice, for m ̸= k. How would you proceed (a) if m > k? (b) if m < k?

3. Original problem: A fictional college committee contains a proportion p of dons, who never
change their minds about anything, and a proportion 1− p of student reps who change their
minds completely at random (with probability r) between successive votes on the same issue.

Now, imagine that p is not known, but r = 1/2. A Varsity investigative article claims that
p = 0.01. You are unconvinced. You pick a member uniformly at random and observe their
voting. They vote the same for 20 consecutive votes. Discuss whether you might obtain useful
further information to assess the claim by watching them for the next 20 votes.

What about if The Cambridge Student had responded, claiming that p = 0?

4. A lattice path S = (S0, S1, . . . , Sn) satisfies S0 = 0 and Sk − Sk−1 = ±1 for each k = 1, . . . , n.
We will study how many lattice paths S satisfy Sn = 0 and S1, . . . , Sn−1 ≥ 0. There are many
approaches to this enumeration problem.

(a) What can you say when n is odd?

(b) When n = 2m is even, here is one approach. Instead, study lattice paths of length 2m+1
satisfying S2m+1 = −1, and S0, S1, . . . , S2m ≥ 0, so that 2m + 1 is the ‘hitting time’ of
−1. Show that the number of such lattice paths is 1

2m+1

(
2m+1
m

)
.

(c) Explain the connection to the original problem, and express the answer to the original
problem in the most natural form.

(d*) Using notation from later in the course, suppose now that the lattice path is generated
randomly by assuming that

P(Sk − Sk−1 = +1) =
1

2
, P(Sk − Sk−1 = −1) =

1

2
,

for every k ≥ 1 independently. This is the simplest example of a random walk. Part (b)
makes a connection between

P(S2m+1 = −1) and P(S2m+1 = −1, S1, . . . , S2m ≥ 0).

How far can this connection be generalised?

(e*) If you are re-reading this problem set later in the course, you might like to revisit this
problem using generating functions.
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2 Random variables, expectations, notable distributions

1. Let X be a geometric random variable on {0, 1, 2, . . .} with parameter p ∈ (0, 1), and Y a
Poisson random variable with parameter λ > 0. Compare the distributions of i) X − n,
conditional on X ≥ n; and ii) Y − n, conditional on Y ≥ n, when n is large.

2. Can you construct non-negative integer valued random variables X and (Xn)n≥1, all taking
non-negative integer values, such that E[X],E[Xn] are all finite, and such that

P(Xn = k) → P(X = k) as n → ∞,

holds for every k ∈ {0, 1, . . .}, but for which E[Xn] ̸→ E[X]?

3. Let σn be a uniformly chosen permutation from Σn, and consider the cycle decomposition of
σn. Let αn,k be the number of cycles in σn of length k. Find E[αn,k]. Let αn be the total
number of cycles in σn. Show that E[αn] → ∞ as n → ∞.

Now, let ℓn be the length of the cycle of σn which includes the element 1. Find the distribution
of ℓn, and also E[ℓn].

Note that E[ℓn]E[αn] ≫ n. Explain why this is not a contradiction.

4. In a community of N people, birthdays are independent, and uniformly chosen from the 365
days of the non-leap year. How would you try to find an expression for the probability that
at least k people share a birthday? (Ie, at least one day d such that at least k people were
born on day d.)

Would this analysis be easier if instead you assumed the number of people in the community
was random, with Poisson(N) distribution?

What if the birthdays were independent but not distributed uniformly through the year?
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3 Random walks, branching processes

1. Let qλ be the extinction probability of a branching process with Poisson(λ) offspring distri-
bution. Consider ζλ = 1 − qλ the corresponding survival probability. Show that ζλ satisfies
ζλ = 1− e−λζλ . Describe the behaviour of ζ1+ϵ as ϵ ↓ 0, in the form ζ1+ϵ ∼ Cϵα, for constants
C,α to be determined.

[Hint: start by showing ζλ → 0 as λ ↓ 1, then expand.]

2. Let G be a graph, consisting of a finite collection of vertices V (G), some pairs of which are
connected by an edge. We declare the neighbours of a vertex v to be those vertices w such
that v, w are directly connected by an edge. We assume the graph is connected, so that there
is a path of edges joining any pair of vertices. Let A be a non-empty subset of the vertices,
and B = V (G) \A. For each vertex v ∈ A, we declare a value aV ∈ R.

Use a probabilistic argument to show that there exists a function f : V (G) → R such that
f(v) = av for all v ∈ A, and for all v ∈ B, f(v) is the average of the values taken by f on the
neighbours of v.

Can you justify that f is unique?

[Note: such a function f is called the (discrete) harmonic extension of (av). ]

3. Let T be a branching process tree with offspring distribution X satisfying µ = E[X] ≤ 1.
Order the individuals in a breadth-first manner, so the root is x1, and the the children of the
root are x2, . . . , x1+Z1 , and the individuals in the (n+ 1)th generation are

xZ0+Z1+...+Zn+1, xZ0+Z1+...+Zn+2 . . . , xZ0+Z1+...+Zn+Zn+1 .

Let c(xi) be the number of children of individual xi.

(a) Consider the random process given by S0 = 0 and Sm = c(x1)+ . . .+c(xm)−m. Explain
briefly why (S0, S1, . . .) is a random walk whose increments have distribution X − 1.

(b) Show that |T |, the total number of individuals in the population, has the same distribu-
tion as τ := inf{m ≥ 0 : Sm = −1}.

(c) Prove that P(|T | = m) = 1
mP(Sm = −1).

(d) Suppose that X takes the values 2 and 0 each with probability 1/2. Explain why E[|T |] =
∞, and find constants C,α such that P(|T | = m) ∼ Cm−α.

4. Let T be a branching process tree with supercritical offspring distribution X satisfying µ =
E[X] > 1. Denote by Ψ the extinction event {|T | < ∞}, and assume q = P(Ψ) ∈ (0, 1).

(a) Explain briefly why the conditional branching process tree (T | Ψ) is itself a branching
process, and describe its offspring distribution X̂.

(b) Show that if X ∼ Po(µ), then X̂ ∼ Po(ν), where ν ̸= µ and satisfies µe−µ = νe−ν . Show
that ν is monotone as a function of µ.

(c) Now return to T , with X ∼ Po(µ). Colour blue all individuals with infinitely many
descendents, and colour red all others, so that Ψc = {root is blue}. State the distribution
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of the number of blue children of the root. Now characterise the distribution of the
number of blue children of the root, conditional on Ψc, and check that the conditional
mass function sums to 1.

Give as complete as description as you can manage for the structure of the blue and red
individuals in T , conditional on Ψc.
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4 Continuous random variables, and limits of random variables

1. Let us define discrete random variables X and Y by a joint probability mass function as
shown:

X -1 0 1
Y

-1 a b c

0 d e f

1 g h i

Write down the marginal mass functions pX(·) and pY (·) of X and Y .

A lecturer is trying to choose {a, b, . . . , i} to illustrate the general principle that Cov(X,Y ) = 0
does not imply X,Y independent. Describe geometrically the sets of {a, b, . . . , i}s which (i)
induce X,Y independent, and (ii) induce Cov(X,Y ) = 0, and conclude that if the lecturer
chooses uniformly at random from the set in (ii) (*), this will illustrate their point with
probability one.

[You may reflect on how to make (*) formal, but this is not part of the question.]

2. (a) The Polya urn model for contagion is as follows. We start with an urn which contains
one white marble and one black marble. At each second we choose a marble at random
from the urn and replace it together with one more marble of the same colour. Calculate
the probability that when n marble are in the urn, i of them are white, and conclude a
limit result for convergence in distribution of the proportion of white marbles in the urn.

(b) Let U1, U2, . . . be IID Unif[0, 1] random variables in probability space (Ω,F ,P). For

each n, we define σ(n) = (σ
(n)
1 , . . . , σ

(n)
n ) a random permutation of {1, 2, . . . , n} to be the

ordering of (U1, . . . , Un). That is, σ
(n) is the unique permutation for which

U
σ
(n)
1

< U
σ
(n)
2

< . . . < U
σ
(n)
n

.

[Note, in this construction, we are ignoring the possibility that any two of the Uns are
equal. Fortunately, this event has probability zero.]

i) Can you state a simpler way to construct σ(n+1) from σ(n) directly, without using
the auxiliary U1, U2, . . . random variables?

ii) Prove that ( 1nσ
(n)
k )n≥k converges almost surely for each k ≥ 1.

(c) Can you use relate part (b) to part (a) to prove almost sure convergence for Polya’s urn?

3. We extend a problem from Sheet 2. Let σn be a uniformly chosen permutation from Σn, and
αn the number of cycles in σn. Denote by C = (C1, C2, . . . , Cαn) the lengths of these cycles,
in decreasing order. Note that conditional on C, the elements {1, 2, . . . , n} are assigned to the
cycles uniformly.

Let ℓn be the length of the cycle containing the element 1. Let βn be the length of a cycle
chosen uniformly from the αn possible cycles. Find expressions for E[ℓn | C] and E[βn | C] in
terms of C, and prove that E[ℓn] ≥ E[βn]. Finally, prove that E[βn]E[αn] ≥ n.
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4. Daniel is playing Snakes and Ladders, which we model by adapting a random walk.

(a) To avoid tears, initially there are no snakes. Let X1, X2, . . . be IID uniform choices from
{1, 2, . . . , 6}, denoting dice rolls, with Sn = X1 + . . . + Xn denoting position after n
moves.

Daniel plays until time TN := inf{n ≥ 0 : Sn ≥ N}, where N is large for the sake of
his parents’ productivity. Derive a CLT for TN , ie a limit in distribution for TN−aN

bN
, for

some aN , bN .

(b) Let αN = ⌊N/3⌋ and βN = ⌊2N/3⌋. We introduce a snake from βN 7→ αN , so that now

Sn+1 :=

{
Sn +Xn if Sn +Xn ̸= βN

αN if Sn +Xn = βN .

When N is large, state the limiting probability that the second case (ie the snake move)
occurs at least once. [You do not need to prove the validity of this limit.]

For large N , describe approximately the distribution of TN := inf{n ≥ 0 : Sn ≥ N},
and explain why there is no choice of aN , bN such that TN−aN

bN
has a continuous limit in

distribution.
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